Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating
نویسندگان
چکیده
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) Ca(2+) release channel plays a central role in the generation and modulation of intracellular Ca(2+) signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP(3), free Ca(2+), free ATP(4-)) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins. However, regulation of InsP(3)R channel activity by free Ca(2+) in the ER lumen ([Ca(2+)](ER)) remains poorly understood because of limitations of Ca(2+) flux measurements and imaging techniques. Here, we used nuclear patch-clamp experiments in excised luminal-side-out configuration with perfusion solution exchange to study the effects of [Ca(2+)](ER) on homotetrameric rat type 3 InsP(3)R channel activity. In optimal [Ca(2+)](i) and subsaturating [InsP(3)], jumps of [Ca(2+)](ER) from 70 nM to 300 µM reduced channel activity significantly. This inhibition was abrogated by saturating InsP(3) but restored when [Ca(2+)](ER) was raised to 1.1 mM. In suboptimal [Ca(2+)](i), jumps of [Ca(2+)](ER) (70 nM to 300 µM) enhanced channel activity. Thus, [Ca(2+)](ER) effects on channel activity exhibited a biphasic dependence on [Ca(2+)](i). In addition, the effect of high [Ca(2+)](ER) was attenuated when a voltage was applied to oppose Ca(2+) flux through the channel. These observations can be accounted for by Ca(2+) flux driven through the open InsP(3)R channel by [Ca(2+)](ER), raising local [Ca(2+)](i) around the channel to regulate its activity through its cytoplasmic regulatory Ca(2+)-binding sites. Importantly, [Ca(2+)](ER) regulation of InsP(3)R channel activity depended on cytoplasmic Ca(2+)-buffering conditions: it was more pronounced when [Ca(2+)](i) was weakly buffered but completely abolished in strong Ca(2+)-buffering conditions. With strong cytoplasmic buffering and Ca(2+) flux sufficiently reduced by applied voltage, both activation and inhibition of InsP(3)R channel gating by physiological levels of [Ca(2+)](ER) were completely abolished. Collectively, these results rule out Ca(2+) regulation of channel activity by direct binding to the luminal aspect of the channel.
منابع مشابه
Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
The conduction properties of inositol (1,4,5)-trisphosphate (InsP3)-gated calcium (Ca) channels (InsP3R) from canine cerebellum for divalent cations and the regulation of the channels by intraluminal Ca were studied using channels reconstituted into planar lipid bilayers. Analysis of single-channel recordings performed with different divalent cations present at 55 mM on the trans (intraluminal)...
متن کاملA data-driven model of a modal gated ion channel: The inositol 1,4,5-trisphosphate receptor in insect Sf9 cells
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) channel is crucial for the generation and modulation of intracellular Ca(2+) signals in animal cells. To gain insight into the complicated ligand regulation of this ubiquitous channel, we constructed a simple quantitative continuous-time Markov-chain model from the data. Our model accounts for most experimentally observed gating behavio...
متن کاملTwo-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium.
Inositol 1,4,5-trisphosphate receptor (IP3R) is a highly controlled calcium (Ca2+) channel gated by inositol 1,4,5-trisphosphate (IP3). Multiple regulators modulate IP3-triggered pore opening by binding to discrete allosteric sites within IP3R. Accordingly we have postulated that these regulators structurally control ligand gating behavior; however, no structural evidence has been available. He...
متن کاملThree-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium.
Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP3R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the lim...
متن کاملBiphasic regulation of InsP3 receptor gating by dual Ca2+ release channel BH3-like domains mediates Bcl-xL control of cell viability.
Antiapoptotic Bcl-2 family members interact with inositol trisphosphate receptor (InsP3R) Ca(2+)release channels in the endoplasmic reticulum to modulate Ca(2+)signals that affect cell viability. However, the molecular details and consequences of their interactions are unclear. Here, we found that Bcl-xL activates single InsP3R channels with a biphasic concentration dependence. The Bcl-xLBcl-2 ...
متن کامل